3,536 research outputs found

    Scalable Multiagent Coordination with Distributed Online Open Loop Planning

    Full text link
    We propose distributed online open loop planning (DOOLP), a general framework for online multiagent coordination and decision making under uncertainty. DOOLP is based on online heuristic search in the space defined by a generative model of the domain dynamics, which is exploited by agents to simulate and evaluate the consequences of their potential choices. We also propose distributed online Thompson sampling (DOTS) as an effective instantiation of the DOOLP framework. DOTS models sequences of agent choices by concatenating a number of multiarmed bandits for each agent and uses Thompson sampling for dealing with action value uncertainty. The Bayesian approach underlying Thompson sampling allows to effectively model and estimate uncertainty about (a) own action values and (b) other agents' behavior. This approach yields a principled and statistically sound solution to the exploration-exploitation dilemma when exploring large search spaces with limited resources. We implemented DOTS in a smart factory case study with positive empirical results. We observed effective, robust and scalable planning and coordination capabilities even when only searching a fraction of the potential search space

    Bayesian Verification under Model Uncertainty

    Full text link
    Machine learning enables systems to build and update domain models based on runtime observations. In this paper, we study statistical model checking and runtime verification for systems with this ability. Two challenges arise: (1) Models built from limited runtime data yield uncertainty to be dealt with. (2) There is no definition of satisfaction w.r.t. uncertain hypotheses. We propose such a definition of subjective satisfaction based on recently introduced satisfaction functions. We also propose the BV algorithm as a Bayesian solution to runtime verification of subjective satisfaction under model uncertainty. BV provides user-definable stochastic bounds for type I and II errors. We discuss empirical results from an example application to illustrate our ideas.Comment: Accepted at SEsCPS @ ICSE 201

    QoS-Aware Multi-Armed Bandits

    Full text link
    Motivated by runtime verification of QoS requirements in self-adaptive and self-organizing systems that are able to reconfigure their structure and behavior in response to runtime data, we propose a QoS-aware variant of Thompson sampling for multi-armed bandits. It is applicable in settings where QoS satisfaction of an arm has to be ensured with high confidence efficiently, rather than finding the optimal arm while minimizing regret. Preliminary experimental results encourage further research in the field of QoS-aware decision making.Comment: Accepted at IEEE Workshop on Quality Assurance for Self-adaptive Self-organising Systems, FAS* 201

    Stacked Thompson Bandits

    Full text link
    We introduce Stacked Thompson Bandits (STB) for efficiently generating plans that are likely to satisfy a given bounded temporal logic requirement. STB uses a simulation for evaluation of plans, and takes a Bayesian approach to using the resulting information to guide its search. In particular, we show that stacking multiarmed bandits and using Thompson sampling to guide the action selection process for each bandit enables STB to generate plans that satisfy requirements with a high probability while only searching a fraction of the search space.Comment: Accepted at SEsCPS @ ICSE 201

    Life before the minster: the social dynamics of monastic foundation at Anglo-Saxon Lyminge, Kent

    Get PDF
    Anglo-Saxon monastic archaeology has been constrained by the limited scale of past investigations and their overriding emphasis on core buildings. This paper draws upon the results of an ongoing campaign of archaeological research that is redressing the balance through an ambitious programme of open-area excavation at Lyminge, Kent, the site of a royal double monastery founded in the seventh century ad. The results of five completed fieldwork seasons are assessed and contextualised in a narrative sequence emphasising the dynamic character of Lyminge as an Anglo-Saxon monastic settlement. In so doing, the study brings into sharp focus how early medieval monasteries were emplaced in the landscape, with specific reference to Anglo-Saxon Kent, a regional context offering key insights into how the process of monastic foundation redefined antecedent central places of long-standing politico-religious significance and social action

    Self-adaptive fitness in evolutionary processes

    Get PDF
    Most optimization algorithms or methods in artificial intelligence can be regarded as evolutionary processes. They start from (basically) random guesses and produce increasingly better results with respect to a given target function, which is defined by the process's designer. The value of the achieved results is communicated to the evolutionary process via a fitness function that is usually somewhat correlated with the target function but does not need to be exactly the same. When the values of the fitness function change purely for reasons intrinsic to the evolutionary process, i.e., even though the externally motivated goals (as represented by the target function) remain constant, we call that phenomenon self-adaptive fitness. We trace the phenomenon of self-adaptive fitness back to emergent goals in artificial chemistry systems, for which we develop a new variant based on neural networks. We perform an in-depth analysis of diversity-aware evolutionary algorithms as a prime example of how to effectively integrate self-adaptive fitness into evolutionary processes. We sketch the concept of productive fitness as a new tool to reason about the intrinsic goals of evolution. We introduce the pattern of scenario co-evolution, which we apply to a reinforcement learning agent competing against an evolutionary algorithm to improve performance and generate hard test cases and which we also consider as a more general pattern for software engineering based on a solid formal framework. Multiple connections to related topics in natural computing, quantum computing and artificial intelligence are discovered and may shape future research in the combined fields.Die meisten Optimierungsalgorithmen und die meisten Verfahren in Bereich künstlicher Intelligenz können als evolutionäre Prozesse aufgefasst werden. Diese beginnen mit (prinzipiell) zufällig geratenen Lösungskandidaten und erzeugen dann immer weiter verbesserte Ergebnisse für gegebene Zielfunktion, die der Designer des gesamten Prozesses definiert hat. Der Wert der erreichten Ergebnisse wird dem evolutionären Prozess durch eine Fitnessfunktion mitgeteilt, die normalerweise in gewissem Rahmen mit der Zielfunktion korreliert ist, aber auch nicht notwendigerweise mit dieser identisch sein muss. Wenn die Werte der Fitnessfunktion sich allein aus für den evolutionären Prozess intrinsischen Gründen ändern, d.h. auch dann, wenn die extern motivierten Ziele (repräsentiert durch die Zielfunktion) konstant bleiben, nennen wir dieses Phänomen selbst-adaptive Fitness. Wir verfolgen das Phänomen der selbst-adaptiven Fitness zurück bis zu künstlichen Chemiesystemen (artificial chemistry systems), für die wir eine neue Variante auf Basis neuronaler Netze entwickeln. Wir führen eine tiefgreifende Analyse diversitätsbewusster evolutionärer Algorithmen durch, welche wir als Paradebeispiel für die effektive Integration von selbst-adaptiver Fitness in evolutionäre Prozesse betrachten. Wir skizzieren das Konzept der produktiven Fitness als ein neues Werkzeug zur Untersuchung von intrinsischen Zielen der Evolution. Wir führen das Muster der Szenarien-Ko-Evolution (scenario co-evolution) ein und wenden es auf einen Agenten an, der mittels verstärkendem Lernen (reinforcement learning) mit einem evolutionären Algorithmus darum wetteifert, seine Leistung zu erhöhen bzw. härtere Testszenarien zu finden. Wir erkennen dieses Muster auch in einem generelleren Kontext als formale Methode in der Softwareentwicklung. Wir entdecken mehrere Verbindungen der besprochenen Phänomene zu Forschungsgebieten wie natural computing, quantum computing oder künstlicher Intelligenz, welche die zukünftige Forschung in den kombinierten Forschungsgebieten prägen könnten

    The Right of Americans to be Protected from Gun Violence

    Get PDF
    The unrelenting gun violence faced by Americans has reached virtually every setting including Walmarts, festivals, entertainment districts, schools, places of worship, and work places. Altercations involving firearms are far more likely to end in death than those involving other weapons or no weapon at all. Historically, the Second Amendment to the United States Constitution was interpreted as the right to bear arms within the context of military service. In Heller, the Supreme Court ruled that individuals had the right to own an operable gun in their homes for protection. However, the Court made clear the right was not unlimited and that gun ownership could be denied to felons and the mentally ill. Gabor addresses whether the public has the right to be protected from gun violence in their community. Gabor argues that social theory, the Declaration of Independence, and a myriad of other sources require national and state governments to be held accountable for the public safety in the face of gun violence
    • …
    corecore